金融信贷风控的机器学习实战课程介绍:
课程目录:
第一课:互联网金融业申请评分卡的介绍
1. 信贷违约的基本概念
2. 申请评分卡在互联网金融业的重要性和特性
3. 贷款申请环节的数据介绍和描述
4. 非平衡样本问题的定义和解决方法
5. 过抽样和欠抽样,SMOTE算法
第二课:申请评分卡中的数据预处理和特征衍生
1. 构建信用风险类型的特征
2. 特征的分箱
分箱的优点
Best-KS分箱法和卡方分箱法
3. 特征信息度的计算和意义
第三课:申请评分卡中的数据预处理和特征衍生(续)
1. 特征分箱后如何编码
WOE的概念、优点和计算
2. 信用风险中的单变量分析和多变量分析
第四课:逻辑回归模型在申请评分卡中的应用
1. 逻辑回归在申请评分卡中的作用的概述
2. 降维的方法
主成分法
3. 变量选择的方法
LASSO方法
逐步回归法
随机森林法
第五课:评分卡模型的评价标准
1. 模型对违约与非违约人群的区分度:KS
2. 模型的准确度衡量:AR
尽可能抓住足够多的违约人群
尽可能不误抓非违约人群
3. 评分卡模型其他常用的评价指标
PSI
Kendal’s Tau
第六课:行为评分卡模型的介绍
1. 行为评分卡的基本概念
2. 行为评分卡的特征构造
3. 行为评分卡模型的开发
第七课:催收评分卡(还款率)模型的介绍
1. 催收评分卡的基本概念
2. 还款率模型的特征构造
3. 还款率模型的开发
第八课:机器学习模型用于评分卡模型-GBDT
1. GBDT模型如何应用在违约预测模型中
2. 如何从违约数据中推导GBDT模型的参数
3. GBDT模型对防范客户违约的指导意义
第九课:深度学习模型用于评分卡模型
1. 深度学习模型如何应用在违约预测模型中
2. 如何从客户违约数据中推导深度学习模型的参数
3. 深度学习模型对防范客户违约的指导意义
4. 深度学习模型和GBDT模型在违约预测工作中的功效比较
第十课:前沿研究-组合评分卡模型
1. 组合模型概述
2. 串行结构的评分组合模型
3. 异态并行结构的评分组合模型
4. 同态并行结构的评分组合模型
侵权联系与免责声明 1、本站资源所有言论和图片纯属用户个人意见,与本站立场无关 2、本站所有资源收集于互联网,由用户分享,该帖子作者与独角兽资源站不享有任何版权,如有侵权请联系本站删除 3、本站部分内容转载自其它网站,但并不代表本站赞同其观点和对其真实性负责 4、如本帖侵犯到任何版权问题,请立即告知本站,本站将及时予与删除并致以最深的歉意 如有侵权联系邮箱:1415374178@qq.com
评论0